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SUMMARY

The present work develops a numerical method for the solution of rotating internal weakly viscoelastic
�ows in rectangular ducts for dimensionless parameters such as the Reynolds, Rossby and Weissenberg
numbers, taken respectively in the intervals between 171 and 12 000, 0.047 and 1=12 and up to 1=10 000.
It is shown that the usual counter-rotating double-vortex con�guration of secondary �ow breaks down
with the increase of the Reynolds number (over the threshold of 171). For higher Reynolds numbers
such as 7500 and 12 000 the secondary �ow di�uses to the interior of the duct where it assumes a fully
developed con�guration and the transition to the turbulence structure is observed. The Sobolev norms
increase almost proportionally to the increase of the Reynolds number, and play an essential role for
more complex problems involving transition to turbulence modelling. Copyright ? 2002 John Wiley &
Sons, Ltd.
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1. INTRODUCTION

In this paper we present some computational results obtained for a model �rst introduced
by Speziale [1], describing the �ows of weakly viscoelastic incompressible �uids in rotating
machinery with externally determined pressure gradient. In his paper, Speziale gave some
numerical simulations for such a pressure driven �ow through rectangular ducts subject to
spanwise rotations, all at fairly low Reynolds numbers (up to 248). It was seen there that the
secondary �ows evidenced substantially lower frictional drag as compared with the Newtonian
case, a striking nonlinear e�ect.
Since the model was obtained under fairly drastic approximations from the original Maxwell

model, we discuss here numerical simulations by means of �nite di�erence techniques in or-
der to examine the persistence of this e�ect for higher Reynolds number. We observe at
Re=12000 a considerable growth of the secondary �ow vis �a vis the principal �ow and an
essential break down of the hypothesis of the model. Interestingly, the numerically calculated

∗Correspondence to: A. L. de Bortoli, Department of Pure and Applied Mathematics, Federal University of Rio
Grande do Sul, Bento Gon�calves 9500, 90501-900, Porto Alegre—RS, Brazil.

Received January 2001
Copyright ? 2002 John Wiley & Sons, Ltd. Revised November 2001



486 A. L. DE BORTOLI, M. THOMPSON AND A. U. ZAVALETA CALDERON

Sobolev norms of the �ow variables re�ect the complexity of the �ow. Such norms are
useful as an input in the analytical theory developed by one of the authors [2] and in
some preliminary results on nonlinear Galerkin approximations, described at the ICIAM
95 meeting, which will be described by the authors elsewhere in a more complete
form.
It is worth noting that our simulations have been carried out for parameter values excluded

from the range under which the global existence results in Reference [2] were established,
although local results exist without such restrictions and as previously observed for higher
Reynolds and Rossby numbers than those given in Reference [1].

2. THE MATHEMATICAL MODEL AND NUMERICAL ALGORITHM

The equations describing the model, obtained as an approximation from a Maxwell model for
the �uid, in terms of nondimensional parameters, may be written in the following form:
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In the above equations, Re is the Reynolds, Ro the Rossby, We the Weissenberg and C the
dimensionless pressure number, where we recall that if W0 is a velocity scale and S a length
scale, then Re=[(W0S)=(�)]; Ro=[(W0)=(�S)]; C=[(�W 2

0 )=(GS)] and We=[(��)=(S2)].
Here � is the �uid density, � the kinematic viscosity (�=�=�); � the angular rotation and � is
the relaxation time involved in the weakly viscoelastic term. These nonlinear partial di�eren-
tial equations are subject to the following boundary conditions in the region R=(0; �)× (0; L)
where �=D=S; L=H=S are the aspect ratios related to the physical region (0; D)× (0; H).
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In the results reported here �=1; L=8.
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Our basic �nite di�erence approximation for the governing Equations (1)–(4) is given by
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with i=1; 2; : : : ; M; j=1; 2; : : : ; N; n=1; 2; : : : ;�x�y are the length in x and y directions,
respectively, and �t is the time step. Equations (5)–(10) are the complete �nite di�erence
formulation of the problem (1)–(4).
In order to obtain numerical solutions of high accuracy, the Runge–Kutta time-stepping

scheme is chosen (see Reference [3]) while more than two stages are employed in order to
extend its stability region. Since, for example, the classical fourth order Runge–Kutta method
requires the evaluation of many coe�cients and dissipative terms, which leads to storage
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problems, we employ the following multistage scheme with low storage requirements
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where �r are the Runge–Kutta time-stepping coe�cients, and R̃ij the residual vector.
E�cient three and �ve-stage schemes are obtained with the allocation of the following

coe�cients:

�1 = 1=2; �2 = 1=2; �3 = 1

�1 = 1=4; �2 = 1=6; �3 = 3=8; �4 = 1=2; �5 = 1

A three-stage scheme is adopted which has been seen to be appropriate when solving
incompressible �uid �ow problems. In the general case of a nonuniform mesh, in terms of
the Courant–Friedrich–Lewy (CFL) number the time interval satis�es the following condition
(see Reference [4]):
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where Vij is the cell volume and �ij the spectral ratios of the Jacobian matrix. The superposition
of generalized CFL and Neumann conditions was adopted here following the indication made
by Speziale and results in the condition [1].
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The �ux vector R̃ij is approximated in the following way for the second Runge–Kutta
time-step, Equation (5), for example
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Boundary conditions are speci�ed using the no-slip condition for velocity and second-order
approximations for the axial vorticity �, respectively. They can be written in the following
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form.
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The initial conditions correspond to the case where Ro → ∝ and We → 0 (no rotation and
Newtonian �uid) which means that, �=  =0 and w is the solution of the Poisson equation

C + R−1
e �w=0 (14)

This corresponds to the spin-up of the fully developed duct �ow and to the way that
experiments on rotating duct �ows are usually conducted (see Speziale [1]).

3. NUMERICAL RESULTS

Equations (1) to (4) are solved numerically using the �nite di�erence explicit Runge–Kutta
scheme as described by Equations (5) to (10). The numerical algorithm is second-order ac-
curate (�x2;�t2) in space and time.
The numerical simulations presented here were conducted in a 1:8 rectangular duct using

a mesh of 16× 128. In each case, we prescribe the longitudinal pressure gradient, Reynolds,
Rossby and Weissenberg numbers.
Figure 1(a) and (b) shows the streamlines computed for Reynolds number equal to Re=171

and Re=248, respectively, with Ro=0:047; G=2× 10−4 lb ft−3 and �=0:005 rad s−1. A
comparison of these results with the ones obtained by Speziale shows good agreement between
these solutions.
It is shown that the usual counter-rotating double-vortex con�guration appears in the sec-

ondary �ow, where the length scale of the vortices are of the order of the width of the duct,
for Re=171. However, as the Reynolds number increases to 248, the double-vortex con�gu-
ration breaks down into eight vortices almost symmetric relative to the horizontal centerline
axis. Further increase of the Reynolds number to 5000 tends to produce eight equal and sym-
metrical vortices showing a �ow con�guration stable in the interior of the channel. There is
no doubt that this �ow is real, since the same results were obtained when the grid was re�ned
with the time-step reduced and when the initial condition was changed during the calculation.
It is also important to observe that Ro is relatively small in this situation.
Figure 2 shows the streamlines and the principal �ow computed for Re=500, Ro=1=12

and C=0:01. The streamlines denote the secondary �ow due to rotation of the duct. It seems
clear from the pictures that in the low Reynolds number Figure 1(a) case, the roll-cells of
axial vorticity are less numerous than in the high Reynolds number case. It is quite clear that
the secondary �ow start as a double-vortex con�guration that is strongly compressed against
the upper and lower walls of the duct. As the Reynolds number increases, this secondary
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Figure 1. Streamlines for Ro=0:047, G=2× 10−4 lb ft−3 and
�=0:005 rad s−1; (a) Re=171, (b) Re=248.

Figure 2. Streamlines for Re=500; Ro=1=12; C=0:01;
(a) We=0, (b) We=1=50 000, (c) We=1=10 000.

�ow di�uses [5] to the interior of the duct where it assumes a fully developed con�guration
(Figure 2). As the Rossby number is of order 1=12 the cell instabilities are big, but not
enough to turn the structure completely unstable (turbulent). The magnitude of the secondary
�ow relative to the axial �ow near the horizontal centerline is substantially larger than for
the small Reynolds number.
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Figure 3. Streamlines for Re=5000; Ro=1=12; C=0:0001;
(a) We=0, (b) We=1=50 000, (c) We=1=10 000.

Figure 3 shows the streamlines and the principal �ow for Re=5000; Ro=1=12 and C=
0:0001. Unfortunately, a direct comparison cannot be made between the numerical values
and experimental ones because there is a notable lack of experimental data on this problem.
Numerical results show that the axial velocity along the horizontal centerline of the duct
is highly asymmetric and a substantial decrease of the principal �ow is observed. In the
numerical experiments it was necessary to reduce the dimensionless pressure number C to
0.0001. For greater values such as 0.01 the numerical procedure was unstable. It is easy to
understand this e�ect considering a given axial �ow that is subjected to a continuous increase
in the angular velocity �; the �ow tends to be unstable and, consequently, the convective
terms become less dominant.
Increasing again the Reynolds number to 7500 for the same parameters as for Re=5000, a

still more complex �ow con�guration is observed, as shown in Figure 4. For both cases the
Weissenberg number is varied between 0 and 1=10 000. The �ow con�guration (streamlines)
after 50 000 iterations are seen to be di�erent in the presence of viscoelasticity, however, as
will be mentioned below, the Sobolev norms were almost the same.
In order to better visualize the �ow behaviour for Reynolds between 500 and 12 000,

Figures 5 and 6 show the streamlines and the vector �eld for this �ow situation. The di-
mensionless pressure number C used to obtain the solution for Re=12000 was equal to
0.0000001 because bigger values such as 0.0001 were not adequate in order to obtain a stable
numerical code.
Through observation of Figure 6 it is easy to identify that an increase of vortices number as

well as a decrease in their size is obtained when there is an increase in the Reynolds number.
Probably the di�culties observed to obtain numerical results for even higher Reynolds numbers
is associated with this behaviour. All big vortices tend to break down and the �ow structure
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Figure 4. Streamlines for Re=7500; Ro=1=12; C=0:0001;
(a) We=0, (b) We=1=50 000, (c) We=1=10 000.

Figure 5. Streamlines for We=0; Ro=1=12; (a) Re=500; C=0:01, (b) Re=5000,
C=0:0001, (c) Re=7500; C=0:0001, (d) Re=12 000; C=0:0000001.

starts to be very complex. Figure 6 helps to clarify the vortices behaviour that appear for
these �ow situations.
Clearly, in order to obtain results for higher Reynolds numbers than the ones presented here

it is necessary to use more careful spatial and time approximations which make the numerical
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Figure 6. Vector �eld for We=0; Ro=1=12; (a) Re=500; C=0:01, (b) Re=5000; C=0:0001,
(c) Re=7500; C=0:0001, (d) Re=12 000; C=0:0000001.

code more sophisticated and consequently more expensive. It takes about 25 min to generate
the present solutions on an Silicon Graphics Origin 200 of our laboratory.
Subsequently, the Sobolev norms for variables w; � and  were analysed for the same

�ow situations presented in Figures 3, 4 and 5. Figure 7 shows the Laplacian of w for
Re=7500; Ro=1=12 and C=0:0001. The Weissenberg number is varied between 0 and
1=10 000 in the simulations described in Figure 7(a), (b) and (c), respectively. Their mean
values in both cases are almost the same, however their frequencies start to be small with the
increase of the Weissenberg number, as can be seen in Equation (2).
A comparison between the Laplacian norms of w;  and � are presented in

Figures 8–10. Figure 8 compares the w Sobolev norms for Reynolds numbers between 500
and 12 000. Their mean value increase with the increase of the Reynolds number. Results
obtained for Re=500 and C=0:01 have the same behaviour, however the mean value tends
to be bigger because of the increase of the dimensionless parameter C. For Reynolds 12 000
and very small C values the norms and their frequencies start to grow considerably.
Probably the increase of the Reynolds number will turn the numerical code unstable due

to the breakdown of this structure. The same behaviour is observed for the other norms, as
shown in Figures 9 and 10. However, the magnitudes of w and � are two orders greater than
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Figure 7. w Sobolev norms for Re=7500; Ro=1=12 and C=0:0001;
(a) We=0, (b) We=1=50 000, (c) We=1=10 000.

Figure 8. w Sobolev norms for We=0 and Ro=1=12; (a) Re=500; C=0:01, (b) Re=5000;
C=0:0001, (c) Re=7500; C=0:0001, (d) Re=12 000; C=0:0000001.

for  . The higher nonlinearity of the �ow behaviour is apparent when analysing the results,
for Re=5000 as well as Re=12000. This is an indication of why a complete mathematical
analysis of the Navier–Stokes is still a challenge; moreover, the numerical results presented
here can help us to better understand these di�culties.
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Figure 9. � Sobolev norms for We=1=50 000 and Ro=1=12; (a) Re=500; C=0:01, (b) Re=5000,
C=0:0001, (c) Re=7500; C=0:0001, (d) Re=12 000; C=0:0000001.

Figure 10.  Sobolev norms for We=0 and Ro=1=12; (a) Re=500; C=0:01, (b) Re=5000,
C=0:0001, (c) Re=7500; C=0:0001, (d) Re=12 000; C=0:0000001.

Simulations have been carried out for Reynolds numbers of the order of 12 000 where
it is seen that an essential breakdown occurs at the underlying hypotheses of the model,
[(|u|)=(|w|)]�1; [(|v|)=(|w|)]�1, while experimental results and simulations for the Navier–
Stokes equations with rotation may be seen in the literature for bulk Reynolds number up
to 30 000. However, as might be suspected, even using �rst order approximations, as in the
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model of Speziale, it is necessary to treat an extension of the model which is strictly three
dimensional. This case involves markedly more complicated nonlinear interactions.

4. CONCLUSIONS

It is shown that the usual counter-rotating double-vortex con�guration for the secondary �ow
occurs for the aspect ratio 1:8 for a rectangular duct. However, as the rotation rate is sub-
stantially increased, this double-vortex con�guration breaks down into an asymmetric of some
counter rotating vortices. It is obvious that the Coriolis term 2�[(@w)=(@y)], which acts as an
axial vorticity source term, is the driving mechanism for the creation of secondary �ow in a
rotating duct. A decrease in the rotation rate leads to a restabilization of the secondary �ow
into a slightly deformed double-vortex con�guration (see Reference [6]).
The magnitude of the secondary �ow relative to the axial �ow near the horizontal centerline

of the 8:1 duct is substantially larger for the weak-to-moderate rotation case. It is quite clear
that the asymmetry of the axial-velocity pro�les along the horizontal centerline of the duct is
a consequence of the convective terms. Besides, the principal velocity pro�les indicate that
velocities near the inner wall are greater than at the outer wall [7].
In conclusion, the numerical results obtained here indicate that there are many interesting

physical phenomena associated with laminar and transitional �ows in rotating rectangular ducts
that are until now not totally understood. This understanding is essential if real progress is to
be made for more complex problems involving turbulence whose applications in the area of
turbomachinery are obvious, such as for centrifuges and turbines.
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